Circulating levels of chylomicron remnants (CMRs) increase postprandially and their composition directly reflects dietary lipid intake. These TG-rich lipoproteins likely contribute to the development of endothelial dysfunction, albeit via unknown mechanisms. Here, we investigated how the FA composition of CMRs influences their actions on human aortic endothelial cells (HAECs) by comparing the effects of model CMRs-artificial TG-rich CMR-like particles (A-CRLPs)-containing TGs extracted from fish, DHA-rich algal, corn, or palm oils.
View Article and Find Full Text PDFAlthough non-alcoholic fatty liver disease (NAFLD), characterised by the accumulation of triacylglycerol in the liver, is the most common liver disorder, the causes of its development and progression to the more serious non-alcoholic steatohepatitis (NASH) remain incompletely understood. Oxidative stress has been implicated as a key factor in both these processes, and mitochondrial dysfunction and inflammation are also believed to play a part. Coenzyme Q (CoQ) is a powerful antioxidant found in all cell membranes which has an essential role in mitochondrial respiration and also has anti-inflammatory properties.
View Article and Find Full Text PDFPostprandial TAG-rich lipoproteins (TRL) can be taken up by macrophages, leading to the formation of foam cells, probably via receptor-mediated pathways. The present study was conducted to investigate whether the postprandial time point at which TRL are collected modulates this process. A meal containing refined olive oil was given to nine healthy young men and TRL were isolated from their serum at 2, 4 and 6 h postprandially.
View Article and Find Full Text PDFBackground: Eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) supplementation has beneficial cardiovascular effects, but postprandial influences of these individual fatty acids are unclear.
Objectives: The primary objective was to determine the vascular effects of EPA + DHA compared with DHA only during postprandial lipemia relative to control high-oleic acid meals; the secondary objective was to characterize the effects of linoleic acid-enriched high-fat meals relative to the control meal.
Design: We conducted a randomized, controlled, double-blind crossover trial of 4 high-fat (75-g) meals containing 1) high-oleic acid sunflower oil (HOS; control), 2) HOS + fish oil (FO; 5 g EPA and DHA), 3) HOS + algal oil (AO; 5 g DHA), and 4) high-linoleic acid sunflower oil (HLS) in 16 healthy men (aged 35-70 y) with higher than optimal fasting triacylglycerol concentrations (mean ± SD triacylglycerol, 1.