Over the past two decades, nanotechnology has captured significant interest, especially in the medical field, where the unique characteristics of nanoscale particles offer substantial advantages. The family of nanosized materials, specifically iron oxide nanoparticles (IONPs), has emerged as promising due to their magnetic properties, biocompatibility, and substantial surface area for therapeutic molecule attachment. The review explores various strategies to enhance the antibacterial properties of IONPs, such as metal doping, which modifies their physicochemical, biological, electrical, and optical properties.
View Article and Find Full Text PDFThis research paper delves into the enhancement of wastewater treatment through the design and synthesis of advanced photocatalytic materials, focusing on the effects of sodium (Na) substitution in CaNaTaTiO perovskites. By employing various analytical techniques such as X-ray diffraction, Field Emission Scanning Electron Microscopy, Transmission Electron Microscopy and UV-vis spectroscopy, the study examines the transition of these perovskites from tetragonal to orthorhombic structures and observes a reduction in Ca content with Na substitution, which also favors the cubic phase formation and inhibits secondary phases. Significantly, magnetic property analysis uncovers an unexpected ferromagnetic ordering in these perovskites, including compositions traditionally viewed as non-magnetic.
View Article and Find Full Text PDFMoO thin film was fabricated on an indium tin oxide substrate using the physical vapor deposition technique. X-ray diffraction and scanning electron microscopy study to investigate surface morphology, grain size, and surface structure, which are critical for absorbing solar spectra in water splitting for hydrogen energy generation. Ultraviolet-visible spectroscopy was used to confirm the absorption of solar spectra and the percentage of transmittance.
View Article and Find Full Text PDFThin films of cadmium telluride (CdTe) have attained the attention of researchers due to the potential application in solar cells. However, cost-effective fabrication of solar cells based on thin films along with remarkable efficiency and control over optical properties is still a challenging task. This study presents an analysis of the structural, optical and electrical properties of undoped and Cu-doped CdTe thin films fabricated on ITO coated glass substrates using an electrodeposition process with a focus on practical applications.
View Article and Find Full Text PDF