Given two unidirectionally coupled nonlinear systems, we speak of generalized synchronization when the responder "follows" the driver. Mathematically, this situation is implemented by a map from the driver state space to the responder state space termed the synchronization map. In nonlinear times series analysis, the framework of the present work, the existence of the synchronization map amounts to the invertibility of the so-called cross map, which is a continuous map that exists in the reconstructed state spaces for typical time-delay embeddings.
View Article and Find Full Text PDFReal-world non-autonomous systems are open, out-of-equilibrium systems that evolve in and are driven by temporally varying environments. Such systems can show multiple timescale and transient dynamics together with transitions to very different and, at times, even disastrous dynamical regimes. Since such critical transitions disrupt the systems' intended or desired functionality, it is crucial to understand the underlying mechanisms, to identify precursors of such transitions, and to reliably detect them in time series of suitable system observables to enable forecasts.
View Article and Find Full Text PDFWe investigate topological and spectral properties of models of European and US-American power grids and of paradigmatic network models as well as their implications for the synchronization dynamics of phase oscillators with heterogeneous natural frequencies. We employ the complex-valued order parameter-a widely used indicator for phase ordering-to assess the synchronization dynamics and observe the order parameter to exhibit either constant or periodic or non-periodic, possibly chaotic temporal evolutions for a given coupling strength but depending on initial conditions and the systems' disorder. Interestingly, both topological and spectral characteristics of the power grids point to a diminished capability of these networks to support a temporarily stable synchronization dynamics.
View Article and Find Full Text PDFEpilepsy is now considered a network disease that affects the brain across multiple levels of spatial and temporal scales. The paradigm shift from an epileptic focus-a discrete cortical area from which seizures originate-to a widespread epileptic network-spanning lobes and hemispheres-considerably advanced our understanding of epilepsy and continues to influence both research and clinical treatment of this multi-faceted high-impact neurological disorder. The epileptic network, however, is not static but evolves in time which requires novel approaches for an in-depth characterization.
View Article and Find Full Text PDF