Publications by authors named "K Lefmann"

We provide an overview of a pressure cell designed to apply uniaxial pressure to single crystals for the study, by neutron scattering techniques, of strongly correlated magnetic systems and, in particular, quantum magnets. A detailed overview of the pressure cell components, their requirements, and links to the scientific and technical specifications are presented. The pressure cell is able to accommodate a 200 mm3 single crystal that can be pressurized up to 2 GPa at cryogenic temperatures.

View Article and Find Full Text PDF

The magnetic properties of the nickelalumite-type layered double hydroxides (LDH), MAl(OH)(SO)·3HO (MAl-LDH) with M = Co ( = 3/2), Ni ( = 1), or Cu ( = 1/2) were determined by a combined experimental and computational approach. They represent three new inorganic, low-dimensional magnetic systems with a defect-free, structurally ordered magnetic lattice. They exhibit no sign of magnetic ordering down to 2 K in contrast to conventional hydrotalcite LDH.

View Article and Find Full Text PDF

When charged particles in periodic lattices are subjected to a constant electric field, they respond by oscillating. Here we demonstrate that the magnetic analogue of these Bloch oscillations are realised in a ferromagnetic easy axis chain. In this case, the "particles" undergoing oscillatory motion in the presence of a magnetic field are domain walls.

View Article and Find Full Text PDF

Neutron spectroscopy on the classical triangular-lattice frustrated antiferromagnet h-YMnO_{3} reveals diffuse, gapless magnetic excitations present both far below and above the ordering temperature. The correlation length of the excitations increases as the temperature approaches zero, bearing a strong resemblance to critical scattering. We model the dynamics in the ordered and correlated disordered phase as critical spin correlations in a two-dimensional magnetic state.

View Article and Find Full Text PDF

Helium Atom Scattering (HAS) and Helium Spin-Echo scattering (HeSE), together helium scattering, are well established, but non-commercial surface science techniques. They are characterised by the beam inertness and very low beam energy (<0.1 eV) which allows essentially all materials and adsorbates, including fragile and/or insulating materials and light adsorbates such as hydrogen to be investigated on the atomic scale.

View Article and Find Full Text PDF