Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB) exacerbating damage by allowing harmful substances and immune cells to infiltrate spinal neural tissues from the vasculature. This leads to inflammation, oxidative stress, and impaired axonal regeneration. The BSCB, essential for maintaining spinal cord homeostasis, is structurally similar to the blood-brain barrier.
View Article and Find Full Text PDFWe present a method of in vitro/in vivo protein detection by pairing CRISPR-Cas9 genome editing with the NanoBiT system. We describe steps for cell culturing, in vitro CRISPR-Cas9 ribonucleoprotein delivery, cell monitoring, efficiency assessments, and edit analysis through HiBiT assays. We then detail procedures to determine edit specificity through genomic DNA analysis, small interfering RNA reverse transfection, and HiBiT blotting.
View Article and Find Full Text PDFSchwann cells (SCs) are the primary glia of the peripheral nervous system. SCs are involved in many debilitating disorders, including diabetic peripheral neuropathy (DPN). Here, we present a strategy for deriving SCs from human pluripotent stem cells (hPSCs) that enables comprehensive studies of SC development, physiology, and disease.
View Article and Find Full Text PDFIntravenous (IV) infusion of bone marrow-derived mesenchymal stem/stromal cells (MSCs) stabilizes the blood-spinal cord barrier (BSCB) and improves functional recovery in experimental models of spinal cord injury (SCI). Although IV delivered MSCs do not traffic to the injury site, IV delivered small extracellular vesicles (sEVs) derived from MSCs (MSC-sEVs) do and are taken up by a subset of M2 macrophages. To test whether sEVs released by MSCs are responsible for the therapeutic effects of MSCs, we tracked sEVs produced by IV delivered DiR-labelled MSCs (DiR-MSCs) after transplantation into SCI rats.
View Article and Find Full Text PDF