Non-Hermitian quantum field theories are a promising tool to study open quantum systems. These theories preserve unitarity if PT symmetry is respected, and in that case, an equivalent Hermitian description exists via the so-called Dyson map. Generically, PT-symmetric non-Hermitian theories can also feature phases where PT symmetry is broken and unitarity is lost.
View Article and Find Full Text PDFIn the presence of a gravitational contribution to the chiral anomaly, the chiral magnetic effect induces an energy current proportional to the square of the temperature in equilibrium. In holography the thermal state corresponds to a black hole. We numerically study holographic quenches in which a planar shell of scalar matter falls into a black hole and raises its temperature.
View Article and Find Full Text PDFThe conservation laws, such as those of charge, energy and momentum, have a central role in physics. In some special cases, classical conservation laws are broken at the quantum level by quantum fluctuations, in which case the theory is said to have quantum anomalies. One of the most prominent examples is the chiral anomaly, which involves massless chiral fermions.
View Article and Find Full Text PDFPhys Rev Lett
August 2016
We study odd viscosity in a holographic model of a Weyl semimetal. The model is characterized by a quantum phase transition from a topological semimetal to a trivial semimetal state. Since the model is axisymmetric in three spatial dimensions there are two independent odd viscosities.
View Article and Find Full Text PDFPhys Rev Lett
February 2016
We present a holographic model of a topological Weyl semimetal. A key ingredient is a time-reversal breaking parameter and a mass deformation. Upon varying the ratio of mass to time-reversal breaking parameter the model undergoes a quantum phase transition from a topologically nontrivial semimetal to a trivial one.
View Article and Find Full Text PDF