Publications by authors named "K L Whitcomb"

Background: Large introductory lecture courses are frequently post-secondary students' first formal interaction with science, technology, engineering, and mathematics (STEM) disciplines. Grade outcomes in these courses are often disparate across student populations, which, in turn, has implications for student retention. This study positions such disparities as a manifestation of systemic inequities along the dimensions of sex, race/ethnicity, income, and first-generation status and investigates the extent to which they are similar across peer institutions.

View Article and Find Full Text PDF

The roles of α-synuclein in neurotransmitter release in brain neurons and in the Parkinson's disease condition have challenged comprehensive description. To gain insight into molecular mechanistic properties that actuate α-synuclein function and dysfunction, the coupled protein and solvent dynamics of oligomer and fibril forms of human α-synuclein are examined in a low-temperature system that allows control of confinement and localization of a motionally sensitive electron paramagnetic resonance spin probe in the coupled solvent-protein regions. The rotational mobility of the spin probe resolves two distinct α-synuclein-associated solvent components for oligomers and fibrils, as for globular proteins, but with dramatically higher fluidities at each temperature, that are comparable to low-confinement, aqueous-cryosolvent mesophases.

View Article and Find Full Text PDF

Protein function is modulated by coupled solvent fluctuations, subject to the degree of confinement from the surroundings. To identify universal features of the external confinement effect, the temperature dependence of the dynamics of protein-associated solvent over 200-265 K for proteins representative of different classes and sizes is characterized by using the rotational correlation time (detection bandwidth, 10-10 s) of the electron paramagnetic resonance (EPR, X-band) spin probe, TEMPOL, which is restricted to regions vicinal to protein in frozen aqueous solution. Weak (protein surrounded by aqueous-dimethylsulfoxide cryosolvent mesodomain) and strong (no added crysolvent) conditions of ice boundary confinement are imposed.

View Article and Find Full Text PDF

Spin probe electron paramagnetic resonance spectroscopy is applied to characterize the dynamics of concentric hydration and mesophase solvent domains that surround proteins within the ice boundary in frozen aqueous solutions. The solvent dynamics are tuned by variation of temperature (190-265K) and by the degree of ice boundary confinement, which is modulated by the volume of added cryosolvent (0-~50Å separation distance from protein surface). Goals are to: (1) characterize the protein-coupled solvent dynamics on correlation time scales of ~10<τ<10s, and spatial scales from protein surface to periphery of the surrounding solution, from the perspective of a free, small-molecule (~7Å diameter) probe, and (2) reveal properties of the solvent-protein coupling that can be correlated with protein functions, that are measureable under the same conditions.

View Article and Find Full Text PDF

Background: While use of simulation to improve teamwork skills has been established in a variety of clinical settings, it is unclear how teamwork skills of nursing students are developed using simulation.

Purpose: The purpose of this review was to synthesize literature on how simulation is used to teach teamwork skills to prelicensure nursing students.

Methods: The integrative review of the literature was conducted using the Whittemore and Knafl 5-stage methodology and the TeamSTEPPS framework.

View Article and Find Full Text PDF