The current review presents a discussion on the utility of neutron scattering, with emphasis on neutron total scattering and small-angle neutron scattering (SANS), to explore the structural properties and the phase behaviour of fluids confined in nanopores. The effectiveness of contrast matching SANS on the evaluation of accessibility of porous materials to invading fluids is highlighted too. This review provides also an overview regarding the neutron scattering studies on the structure and the accessibility of greenhouse gases in the complex pore network of geomaterials, with applications to CO geological sequestration and enhanced oil and gas recovery.
View Article and Find Full Text PDFShale is an increasingly viable source of natural gas and a potential candidate for geologic CO sequestration. Understanding the gas adsorption behavior on shale is necessary for the design of optimal gas recovery and sequestration projects. In the present study neutron diffraction and small-angle neutron scattering measurements of adsorbed CO in Marcellus Shale samples were conducted on the Near and InterMediate Range Order Diffractometer (NIMROD) at the ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory along an adsorption isotherm of 22 °C and pressures of 25 and 40 bar.
View Article and Find Full Text PDFEverett's theorem-6 of the domain theory was examined by conducting adsorption in situ with small angle x-ray scattering (SAXS) supplemented by the contrast matching technique. The study focuses on the spectrum differences of a point to which the system arrives from different scanning paths. It is noted that according to this theorem at a common point the system has similar macroscopic properties.
View Article and Find Full Text PDFThe phase behavior of sorbed CO{2} in an ordered mesoporous silica sample (SBA-15) was studied by neutron diffraction. Surprisingly, upon cooling our sample below the bulk critical point, confined CO{2} molecules neither freeze nor remain liquid as expected, but escape from the pores. The phenomenon has additionally been confirmed gravimetrically.
View Article and Find Full Text PDFVycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of 'ink-bottle' pores.
View Article and Find Full Text PDF