Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG.
View Article and Find Full Text PDFStress-responsive components of the mitochondrial alternative electron transport pathway have the capacity to improve tolerance of plants to abiotic stress, particularly the alternative oxidase AOX1A but also external NAD(P)H dehydrogenases such as NDB2, in Arabidopsis. NDB2 and AOX1A can cooperate to entirely circumvent the classical electron transport chain in Arabidopsis mitochondria. Overexpression of AOX1A or NDB2 alone can have slightly negative impacts on plant growth under optimal conditions, while simultaneous overexpression of NDB2 and AOX1A can reverse these phenotypic effects.
View Article and Find Full Text PDFHeight from soil at the base of plant to the first pod (HFP) is an important trait for mechanical harvesting of legume crops. To minimise the loss of pods, the HFP must be higher than that of the blades of most combine harvesters. Here, we review the genetic control, morphology, and variability of HFP in legumes and attempt to unravel the diverse terminology for this trait in the literature.
View Article and Find Full Text PDFDoubled haploid production is a valuable biotechnology that can accelerate the breeding of new wheat varieties by several years through the one-step creation of 100% homozygous plants. The technology also plays important role in studying the genetic control of traits in wheat, in marker-assisted selection, in genomics and in genetic engineering. In this paper, recent advances in androgenesis and gynogenesis techniques, emphasizing predominantly the in vitro culture phase, as well as the emerging innovative approaches in researching and producing wheat doubled haploids are reviewed.
View Article and Find Full Text PDF