Publications by authors named "K L McClelland"

Testicular fetal Leydig cells are a specialized cell type responsible for embryo masculinization. Fetal Leydig cells produce androgens, that induce the differentiation of male reproductive system and sexual characteristics. Deficiencies in Leydig cell differentiation leads to various disorders of sex development and male reproductive defects such as ambiguous genitalia, hypospadias, cryptorchidism, and infertility.

View Article and Find Full Text PDF

Atypical fibroxanthoma (AFX) is a rare low-grade sarcoma that occurs mainly in the elderly and may recur locally. There are multiple variants including keloidal AFX (KAF). KAF is characterised by a proliferation of atypical spindled and epithelioid cells admixed with bizarre pleomorphic cells.

View Article and Find Full Text PDF

Introduction: Following the emergence of SARS-CoV-2 in 2020, care homes were disproportionately impacted by high mortality and morbidity of vulnerable elderly residents. Non-pharmaceutical interventions (NPIs) and improved infection control measures together with vaccination campaigns have since improved outcomes of infection. We studied the utility of past infection status, recent vaccination and anti-S antibody titres as possible correlates of protection against a newly emergent Omicron variant infection.

View Article and Find Full Text PDF

A limitation of the implementation of cadmium chalcogenide quantum dots (QDs) in charge transfer systems is the efficient removal of photogenerated holes. Rapid hole transfer has typically required the functionalization of hole acceptors with groups that can coordinate to the surface of the QD. In addition to being synthetically limiting, this strategy also necessitates a competitive binding equilibrium between the hole acceptor and native, solubilizing ligands on the nanocrystal.

View Article and Find Full Text PDF

Living bio-nano systems for artificial photosynthesis are of growing interest. Typically, these systems use photoinduced charge transfer to provide electrons for microbial metabolic processes, yielding a biosynthetic solar fuel. Here, we demonstrate an entirely different approach to constructing a living bio-nano system, in which electrogenic bacteria respire semiconductor nanoparticles to support nanoparticle photocatalysis.

View Article and Find Full Text PDF