Publications by authors named "K L M Coene"

Inborn errors of metabolism constitute a set of hereditary diseases that impose severe medical and physical challenges in the affected individual, in particular, for the pediatric patient population. Timely diagnosis is crucial for these patients, as any delay could result in irreversible health damage, underscoring the importance of early initiation of personalized treatment. Current routine diagnostic screening for inborn errors of metabolism relies on various targeted analyses of established biomarkers.

View Article and Find Full Text PDF
Article Synopsis
  • Data indicates that certain metabolites may more effectively predict health outcomes in phenylketonuria (PKU) patients than just blood phenylalanine levels.
  • The study utilized advanced techniques to analyze lipid and metabolite profiles in treated adult PKU patients compared to matched controls, revealing significant differences in various lipid and metabolite features.
  • The findings contribute to understanding the metabolic characteristics of PKU, suggesting the need for further research to clarify if the observed changes are due to PKU, dietary factors, or other unknown influences.
View Article and Find Full Text PDF

Recent studies in PKU patients identified alternative biomarkers in blood using untargeted metabolomics. To test the added clinical value of these novel biomarkers, targeted metabolomics of 11 PKU biomarkers (phenylalanine, glutamyl-phenylalanine, glutamyl-glutamyl-phenylalanine, N-lactoyl-phenylalanine, N-acetyl-phenylalanine, the dipeptides phenylalanyl-phenylalanine and phenylalanyl-leucine, phenylalanine-hexose conjugate, phenyllactate, phenylpyruvate, and phenylacetate) was performed in stored serum samples of the well-defined PKU patient-COBESO cohort and a healthy control group. Serum samples of 35 PKU adults and 20 healthy age- and sex-matched controls were analyzed using ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry.

View Article and Find Full Text PDF

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare neurometabolic disorder caused by disruption of the gamma-aminobutyric acid (GABA) pathway. A more detailed understanding of its pathophysiology, beyond the accumulation of GABA and gamma-hydroxybutyric acid (GHB), will increase our understanding of the disease and may support novel therapy development. To this end, we compared biochemical body fluid profiles from SSADHD patients with controls using next-generation metabolic screening (NGMS).

View Article and Find Full Text PDF

Distinguishing isomeric saccharides poses a major challenge for analytical workflows based on (liquid chromatography) mass spectrometry (LC-MS). In recent years, many studies have proposed infrared ion spectroscopy as a possible solution as the orthogonal, spectroscopic characterization of mass-selected ions can often distinguish isomeric species that remain unresolved using conventional MS. However, the high conformational flexibility and extensive hydrogen bonding in saccharides cause their room-temperature fingerprint infrared spectra to have broad features that often lack diagnostic value.

View Article and Find Full Text PDF