Publications by authors named "K L Kohlhaas"

The integrated stress response (ISR) attenuates the rate of protein synthesis while inducing expression of stress proteins in cells. Various insults activate kinases that phosphorylate the GTPase eIF2 leading to inhibition of its exchange factor eIF2B. Vanishing White Matter (VWM) is a neurological disease caused by eIF2B mutations that, like phosphorylated eIF2, reduce its activity.

View Article and Find Full Text PDF

ABT-126 is a nicotinic acetylcholine receptor (nAChR) agonist that is selective for the α7 subtype of the receptor. nAChRs are thought to play a role in a variety of neurocognitive processes and have been a pharmacologic target for disorders with cognitive impairment, including schizophrenia and Alzheimer's disease. As part of the preclinical safety package for ABT-126, its potential for abuse was assessed.

View Article and Find Full Text PDF

Schizophrenia is a chronic disease that has been hypothesized to be linked to neurodevelopmental abnormalities. Schizophrenia patients exhibit impairments in basic sensory processing including sensory gating deficits in P50 and mismatch negativity (MMN). Neuronal nicotinic acetylcholine receptor (nAChR) agonists have been reported to attenuate these deficits.

View Article and Find Full Text PDF

Nitric oxide (NO) is a gaseous neurotransmitter that plays a significant role in the establishment and refinement of functional neural circuits. Genetic and post-mortem studies have suggested that neuronal NO synthase (NOS-1) activity may be compromised in frontal and temporal lobes, and related structures, in schizophrenia. The goal of this study was to determine if there is a link between neonatal disruptions in NO signalling and disturbances in the development and function of prefrontal-temporolimbic circuits.

View Article and Find Full Text PDF

Background And Purpose: Positive allosteric modulation of α4β2 nicotinic acetylcholine (nACh) receptors could add a new dimension to the pharmacology and therapeutic approach to these receptors. The novel modulator NS9283 was therefore tested extensively.

Experimental Approach: Effects of NS9283 were evaluated in vitro using fluorescence-based Ca(2+) imaging and electrophysiological voltage clamp experiments in Xenopus oocytes, mammalian cells and thalamocortical neurons.

View Article and Find Full Text PDF