In order to make available new derivatives, diethyl α-amino-α-aryl-methylphosphonates were subjected to phosphorylation, phosphinoylation and even thiophosphinoylation by reaction with phosphoryl chlorides, diphenylphosphinoyl chloride, and with the mixture of diphenylchlorophosphine and elemental sulfur, respectively. The X-ray crystal structures of the diphenylphosphinoyl and the diphenylthiophosphinoyl derivatives revealed molecular and supramolecular similarities, as well as a few differences too. An essential conformation change, along with packing differences are attributable to a change of one heteroatom: an oxygen for a sulfur in one of the P=X function.
View Article and Find Full Text PDFPhosphorus is an essential building block of life, likely since its beginning. Despite this importance for prebiotic chemistry, phosphorus was scarce in Earth's rock record and mainly bound in poorly soluble minerals, with the calcium-phosphate mineral apatite as key example. While specific chemical boundary conditions have been considered to address this so-called phosphate problem, a fundamental process that solubilizes and enriches phosphate from geological sources remains elusive.
View Article and Find Full Text PDFMethylenebisphosphonic derivatives including hydroxy-methylenebisphosphonic species may be of potential biological activity, and a part of them is used in the treatment of bone diseases. Methylenebisphosphonates may be obtained by the Michaelis-Arbuzov reaction of suitably α-substituted methylphosphonates and trialkyl phosphites or phosphinous esters, while the hydroxy-methylene variations are prepared by the Pudovik reaction of α-oxophosphonates and different >P(O)H reagents, such as diethyl phosphite and diarylphosphine oxides. After converting α-hydroxy-benzylphosphonates and -phosphine oxides to the α-halogeno- and α-sulfonyloxy derivatives, they were utilized in the Michaelis-Arbuzov reaction with trialkyl phosphites and ethyl diphenylphosphinite to afford the corresponding bisphosphonate, bis(phosphine oxide) and phosphonate-phosphine oxide derivatives.
View Article and Find Full Text PDFA series of α-hydroxy-alkylphosphonates and α-hydroxy-alkylphosphine oxides were synthesized by the Pudovik reaction of acetaldehyde and acetone with dialkyl phosphites or diarylphosphine oxides. The additions were performed in three different ways: in liquid phase using triethylamine as the catalyst (1), on the surface of AlO/KF solid catalyst (2), or by a MW-assisted NaCO-catalyzed procedure (3). In most of the cases, our methods were more efficient and more robust than those applied in the literature.
View Article and Find Full Text PDFFluoromethyl triflate (superfluoromethyl, SFM, FHCOSOCF) and fluoromethyl fluorosulfonate (magic fluoromethyl, MFM, FHCOSOF) are two easily synthesized, highly effective and non-ozone depleting fluoromethylation reagents. They are analogous to the well-known and widely used methylation reagents HCOSOCF and HCOSOF. Both SFM and MFM have been fully characterized by multinuclear NMR spectroscopy (H, C, O, F, S).
View Article and Find Full Text PDF