causes severe gastrointestinal disease resulting from the ingestion of oocysts, followed by oocyst excystation in the small intestine and the release of infective sporozoites. An understudied strategy for inactivation is purposeful oocyst excystation, as sporozoites do not survive long in the environment. This study showed that C.
View Article and Find Full Text PDFCryptosporidium parvum is waterborne parasite that can cause potentially life-threatening gastrointestinal disease and is resistant to conventional water treatment processes, including chlorine disinfection. The current Environmental Protection Agency-approved method for oocyst detection and quantification is expensive, limiting the ability of water utilities to monitor complex watersheds thoroughly to understand the fate and transport of C. parvum oocysts.
View Article and Find Full Text PDFThe presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the subsequent months, the potential for wastewater surveillance to contribute to COVID-19 mitigation programmes has been the focus of intense national and international research activities, gaining the attention of policy makers and the public. As a new application of an established methodology, focused collaboration between public health practitioners and wastewater researchers is essential to developing a common understanding on how, when and where the outputs of this non-invasive community-level approach can deliver actionable outcomes for public health authorities.
View Article and Find Full Text PDFThree different-sized biosand filters (i.e., the center for Affordable Water and Sanitation Technology v10 concrete filter, a 5-gal bucket filter, and a 2-gal bucket filter with fine sand depths of 54, 15, and 10 cm, respectively), configured with and without the addition of iron nails to the diffuser basin, were evaluated for removal of bacteria, protozoa, and viruses over pause periods ranging from 1 to 72 hrs.
View Article and Find Full Text PDFAppl Environ Microbiol
November 2020
This study investigated the use of biofilms to monitor in water. Benthic rock and submersible slide biofilms were sampled upstream and downstream of point sources in a suburban watershed in southeastern Pennsylvania. More oocysts were detected in biofilms scraped from rocks downstream than upstream of a wastewater treatment plant (WWTP) (19 versus 5, respectively; = 1).
View Article and Find Full Text PDF