Publications by authors named "K L Jarolim"

Aurofusarin (AURO), a dimeric naphthoquinone, is produced by Fusarium fungi. Although frequently found in food and feed, toxicological studies are limited. Hence, the in vitro toxicity of AURO was investigated in the colon adenocarcinoma cell line HT29 and the non-tumorigenic colon cells HCEC-1CT.

View Article and Find Full Text PDF

Classic cytotoxic drugs remain indispensable instruments in antitumor therapy due to their effectiveness and a more prevalent insensitivity toward tumor resistance mechanisms. Herein we describe the favorable properties of 6-(N,N-dimethyl-2-aminoethoxy)-11-(3,4,5-trimethoxyphenyl)pyrido[3,4-c][1,9]phenanthroline (P8-D6), a powerful inducer of apoptosis caused by an equipotent inhibition of human topoisomerase I and II activities. A broad-spectrum effect against human tumor cell lines at nanomolar concentrations, as well as strong antileukemic effects, were shown to be superior to those of marketed topoisomerase-targeting drugs and dual topoisomerase inhibitors in clinical trials.

View Article and Find Full Text PDF

Alternariol (AOH) and altertoxin II (ATX II) are mycotoxins formed by Alternaria spp. Since they are expected to co-occur in Alternaria-infested food and feed, we addressed the question of combinatory effects. In addition, potentially involved regulatory microRNAs were surveyed in an exploratory approach.

View Article and Find Full Text PDF

Type II DNA-topoisomerases (topo II) play a crucial role in the maintenance of DNA topology. Previously, fungi of the Alternaria genus were found to produce mycotoxins that target human topo II. These results implied the question why a fungus should produce secondary metabolites that target a human enzyme.

View Article and Find Full Text PDF

The mycotoxins altertoxin I and II (ATX I and II) are secondary metabolites produced by Alternaria alternata fungi and may occur as food and feed contaminants, especially after long storage periods. Although the toxic potential of altertoxins has been previously investigated, little is known about the pathways that play a role in their intracellular metabolism. In order to identify potential targets of ATX I and ATX II, the two toxins were tested for interaction with the nuclear factor erythroid-derived 2-like 2/antioxidant response element (Nrf2/ARE) pathway in mammalian cells.

View Article and Find Full Text PDF