Publications by authors named "K L Francis"

Photoacoustic imaging offers optical contrast images of human tissue at acoustic resolution, making it valuable for diverse clinical applications. However, quantifying tissue composition via optical contrast remains challenging due to the unknown light fluence within the tissue. Here, we propose a method that leverages known chromophores (, arterial blood) to improve the accuracy of quantitative photoacoustic imaging.

View Article and Find Full Text PDF

Background: Megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare and progressive neurodegenerative disorder involving the white matter, is not adequately recapitulated by current disease models. Somatic cell reprogramming, along with advancements in genome engineering, may allow the establishment of human models of MLC for disease modeling and drug screening. In this study, we utilized cellular reprogramming and gene-editing techniques to develop induced pluripotent stem cell (iPSC) models of MLC to recapitulate the cellular context of the classical MLC-impacted nervous system.

View Article and Find Full Text PDF

Extracellular vesicle (EV) secretion is an important, though not fully understood, intercellular communication process. Lipid metabolism has been shown to regulate EV activity, though the impact of specific lipid classes is unclear. Through analysis of small EVs (sEVs), we observe aberrant increases in sEV release within genetic models of cholesterol biosynthesis disorders, where cellular cholesterol is diminished.

View Article and Find Full Text PDF

Due to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells.

View Article and Find Full Text PDF

Epigenetic therapies facilitate transcription of immunogenic repetitive elements that cull cancer cells through 'viral mimicry' responses. Paradoxically, cancer-initiating events also facilitate transcription of repetitive elements. Contributions of repetitive element transcription towards cancer initiation, and the mechanisms by which cancer cells evade lethal viral mimicry responses during tumor initiation remain poorly understood.

View Article and Find Full Text PDF