Publications by authors named "K L Cottrill"

Background: Microcystins are an emergent public health problem. These toxins are secondary metabolites of harmful cyanobacterial blooms, with blooms becoming more prevalent with eutrophication of water. Exposure to microcystins can result in sickness, liver damage, and even death.

View Article and Find Full Text PDF

Cystic fibrosis related diabetes (CFRD), the main co-morbidity in cystic fibrosis (CF), is associated with higher rates of lung function decline. We hypothesize that airway epithelial barrier function is impaired in CF and is further exacerbated under hyperglycemia, worsening pulmonary outcomes. Using 16HBE cells, we studied the effects of hyperglycemia in airway epithelial barrier function.

View Article and Find Full Text PDF

Dysregulated neutrophil recruitment drives many pulmonary diseases, but most preclinical screening methods are unsuited to evaluate pulmonary neutrophilia, limiting progress towards therapeutics. Namely, high throughput therapeutic screening systems typically exclude critical neutrophilic pathophysiology, including blood-to-lung recruitment, dysfunctional activation, and resulting impacts on the air-blood barrier. To meet the conflicting demands of physiological complexity and high throughput, we developed an assay of 96-well Leukocyte recruitment in an Air-Blood Barrier Array (L-ABBA-96) that enables -like neutrophil recruitment compatible with downstream phenotyping by automated flow cytometry.

View Article and Find Full Text PDF

Background: Asthma exacerbations are highly prevalent in children, but only a few studies have examined the biologic mechanisms underlying exacerbations in this population.

Objective: High-resolution metabolomics analyses were performed to understand the differences in metabolites in children with exacerbating asthma who were hospitalized in a pediatric intensive care unit for status asthmaticus. We hypothesized that compared with a similar population of stable outpatients with asthma, children with exacerbating asthma would have differing metabolite abundance patterns with distinct clustering profiles.

View Article and Find Full Text PDF

Myeloperoxidase (MPO) is released by neutrophils in inflamed tissues. MPO oxidizes chloride, bromide, and thiocyanate to produce hypochlorous acid (HOCl), hypobromous acid (HOBr), and hypothiocyanous acid (HOSCN), respectively. These oxidants are toxic to pathogens, but may also react with host cells to elicit biological activity and potential toxicity.

View Article and Find Full Text PDF