Int J Circumpolar Health
February 2002
Objectives: Stroke is a major cause of brain injury in Alaska. Since antioxidant levels are decreased in aged brain, the greater predisposition to neuronal death in stroke leading to subsequent neurodegeneration in aged individuals may be related to changes in oxidant balance. We studied the effect of the endogenous antioxidant melatonin on excitotoxic injury resulting from N-methyl-D-aspartate (NMDA)-induced damage by developing an organotypic mouse brain slice model.
View Article and Find Full Text PDFAn organotypic mouse brain slice culture system of Alzheimer's disease (AD) under low oxygen partial pressures was developed to determine the antioxidant properties of the pineal hormone melatonin in vitro. Assays for biochemical markers of oxidative stress including redox active iron assay, heme-oxygenase-1 and 8-hydroxyguanosine inmunoreactivity were performed along with morphological analysis for stressed tissue following amyloid-beta (A beta) 1-40 insult. Melatonin (100 microM) significantly reduced the appearance of condensed chromatin, redox active iron, heme-oxygenase-1 induction and 8-hydroxyguanosine immunoreactivity caused by 50 microM A beta.
View Article and Find Full Text PDFChem Biol Interact
March 2001
Neurodegeneration in Alzheimer's disease (AD) is associated with many features of the immune system. For example, cytokines such as IL-6, synthesized by microglia and astrocytes, are associated with senile plaques. To further study the role of cytokines in early stage AD neurodegeneration, an organotypic mouse brain slice culture system with microglia and astrocytes was developed.
View Article and Find Full Text PDFJ Neurosci Methods
August 1999
Microdialysis is a widely used in vivo sampling technique commonly used to monitor extracellular levels of a variety of molecules including neurotransmitters and metabolites. To facilitate interpretation of microdialysis results, this study critically examines changes in synaptic morphology induced by microdialysis. Tissue surrounding microdialysis probes was examined using light and electron microscopy at three distances from the probe tract.
View Article and Find Full Text PDF