Publications by authors named "K L B Borden"

The eukaryotic translation initiation factor eIF4E acts as a multifunctional factor that simultaneously influences mRNA processing, export, and translation in many organisms. Its multifactorial effects are derived from its capacity to bind to the methyl-7-guanosine cap on the 5'end of mRNAs and thus can act as a cap chaperone for transcripts in the nucleus and cytoplasm. In this review, we describe the multifactorial roles of eIF4E in major mRNA-processing events including capping, splicing, cleavage and polyadenylation, nuclear export and translation.

View Article and Find Full Text PDF

The UDP glucuronosyltransferases (UGT) deactivate many therapeutics via glucuronidation while being required for clearance of normal metabolites and xenobiotics. There are 19 UGT enzymes categorized into UGT1A and UGT2B families based on sequence conservation. This presents a challenge in terms of targeting specific UGTs to overcome drug resistance without eliciting overt toxicity.

View Article and Find Full Text PDF

Recent findings position the eukaryotic translation initiation factor eIF4E as a novel modulator of mRNA splicing, a process that impacts the form and function of resultant proteins. eIF4E physically interacts with the spliceosome and with some intron-containing transcripts implying a direct role in some splicing events. Moreover, eIF4E drives the production of key components of the splicing machinery underpinning larger scale impacts on splicing.

View Article and Find Full Text PDF

Unlabelled: Exportin-1 (XPO1), the main soluble nuclear export receptor in eukaryotic cells, is frequently overexpressed in diffuse large B-cell lymphoma (DLBCL). A selective XPO1 inhibitor, selinexor, received approval as single agent for relapsed or refractory (R/R) DLBCL. Elucidating the mechanisms by which XPO1 overexpression supports cancer cells could facilitate further clinical development of XPO1 inhibitors.

View Article and Find Full Text PDF