The advent of next-generation technology has significantly advanced the implementation and delivery of Deep Brain Stimulation (DBS) for Essential Tremor (ET), yet controversies persist regarding optimal targets and networks responsible for tremor genesis and suppression. This review consolidates key insights from anatomy, neurology, electrophysiology, and radiology to summarize the current state-of-the-art in DBS for ET. We explore the role of the thalamus in motor function and describe how differences in parcellations and nomenclature have shaped our understanding of the neuroanatomical substrates associated with optimal outcomes.
View Article and Find Full Text PDFClassification and delineation of the motor-related nuclei in the human thalamus have been the focus of numerous discussions for a long time. Difficulties in finding consensus have for the most part been caused by paucity of direct experimental data on connections of individual nuclear entities. Kultas-Ilinsky et al.
View Article and Find Full Text PDFThe neurotransmitter γ-aminobutyric acid (GABA) plays an important role in the motor thalamic nuclei. This report analyzes the distribution of the GABA-producing enzyme glutamic acid decarboxylase isoform 65 (GAD65), stained with monoclonal antibody, in human and rhesus monkey thalami and compares it with staining patterns of some widely used cytoskeletal and calcium binding protein markers. GAD65 immunoreactivity distinctly labeled two systems: fibers and terminals of basal ganglia thalamic afferents and local circuit neurons, revealing fine features of GABAergic circuitry in the human thalamus.
View Article and Find Full Text PDFThis study analyzed the expression of differentiation markers (Calbindin D28K: CaBP; parvalbumin: PARV; calretinin: CalR), gamma-aminobutyric acid (GABA) markers (GABA, glutamic acid decarboxylases: GAD65, GAD67; and GABA transporters: GAT1, GAT3), and other markers (neurotensin: NT, and neurofilament-specific protein: SMI32) in the human thalamus at 8-23 gestation weeks (g.w.), focusing on the motor-related nuclei.
View Article and Find Full Text PDFAscending output from the basal ganglia to the primate motor thalamus is carried by GABAergic nigro- and pallido-thalamic pathways, which interact with intrinsic thalamic GABAergic systems represented in primates by local circuit neurons and axons of the reticular thalamic nucleus. Disease-triggered pathological processes in the basal ganglia can compromise any of these pathways either directly or indirectly, yet the effects of basal ganglia lesioning on its thalamic afferent-receiving territories has not been studied in primates. Two GABA(A) receptor ligands, [(3)H]muscimol and [(3)H]flunitrazepam, were used to study the distribution and binding properties of the receptor in intact monkeys, those with kainic acid lesions in the globus pallidus, and those with ibotenic acid lesions in the reticular nucleus using quantitative autoradiographic technique on cryostat sections of fresh frozen brain tissue.
View Article and Find Full Text PDF