Publications by authors named "K Krambrock"

Regrettably, glioblastoma multiforme (GBM) remains the deadliest form of brain cancer, where the early diagnosis plays a pivotal role in the patient's therapy and prognosis. Hence, we report for the first time the design, synthesis, and characterization of new hybrid organic-inorganic stimuli-responsive nanoplexes (NPX) for bioimaging and killing brain cancer cells (GBM, U-87). These nanoplexes were built through coupling two nanoconjugates, produced using a facile, sustainable, green aqueous colloidal process ("bottom-up").

View Article and Find Full Text PDF

Methane conversion to valuable chemicals is a highly challenging and desirable reaction. Photocatalysis is a clean pathway to drive this chemical reaction, avoiding the high temperature and pressure of the syngas process. Titanium dioxide, being the most used photocatalyst, presents challenges in controlling the oxidation process, which is believed to depend on the metal sites on its surface that function as heterojunctions.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common primary brain cancer in adults. Despite the remarkable advancements in recent years in the realm of cancer diagnosis and therapy, regrettably, GBM remains the most lethal form of brain cancer. In this view, the fascinating area of nanotechnology has emerged as an innovative strategy for developing novel nanomaterials for cancer nanomedicine, such as artificial enzymes, termed nanozymes, with intrinsic enzyme-like activities.

View Article and Find Full Text PDF

We report the synthesis and characterization of new tri-cationic corrole derivatives, containing Pt(II) or Pd(II) complexes attached at the peripheral position of thienyl moieties. Corrole derivatives were characterized through microanalysis, electrochemical, spectrometry and spectroscopy analysis. Singlet and triplet excited-states are investigated by photophysical/theoretical calculation methods and photobiological parameters were also evaluated spectroscopic techniques (UV-Vis and EPR).

View Article and Find Full Text PDF

TiO-based visible-light-sensitive nanomaterials are widely studied for photocatalytic applications under UV-Vis radiation. Among the mechanisms of visible-light sensitization, extrinsic oxygen vacancies have been introduced into TiO and charge-transfer complexes (CTCs) have been formed between chelating ligands, such as acetylacetone, and nanocrystalline TiO (TiO-ACAC). However, the influence of extrinsic oxygen vacancies on the photocatalytic performance of TiO-based CTCs is unknown.

View Article and Find Full Text PDF