Publications by authors named "K Koumpouras"

The adsorption of organic molecules to surfaces is a central issue to achieve fully-functional molecular devices, for which porphyrins are well-studied due to their chemical stability and functional diversity. Herein, we investigate both the physical and the chemical adsorption of the free-base tetraphenylporphyrin 2H-TPP on the Cu(111) surface within the framework of density functional theory and find that the most stable physisorbed configuration is more weakly bound by -0.31 eV than the chemisorbed configuration.

View Article and Find Full Text PDF

To distinguish between chemical bonding and physical binding is usually simple. They differ, in the normal case, in both interaction strength (binding energy) and interaction length (structure). However, chemical bonding can be weak (e.

View Article and Find Full Text PDF

Heusler compounds are exciting materials for future spintronics applications because they display a wide range of tunable electronic and magnetic interactions. Here, we use a femtosecond laser to directly transfer spin polarization from one element to another in a half-metallic Heusler material, CoMnGe. This spin transfer initiates as soon as light is incident on the material, demonstrating spatial transfer of angular momentum between neighboring atomic sites on time scales < 10 fs.

View Article and Find Full Text PDF

In magnetic materials, nontrivial spin textures may emerge due to the competition among different types of magnetic interactions. Among such spin textures, chiral magnetic solitons represent topologically protected spin configurations with particle-like properties. Based on atomistic spin dynamics simulations, we demonstrate that these chiral magnetic solitons are ideal to use for logical operations, and we demonstrate the functionality of a three-input majority gate, in which the input states can be controlled by applying an external electromagnetic field or spin-polarized currents.

View Article and Find Full Text PDF

Chiral magnetic interactions induce complex spin textures including helical and conical spin spirals, as well as particle-like objects such as magnetic skyrmions and merons. These spin textures are the basis for innovative device paradigms and give rise to exotic topological phenomena, thus being of interest for both applied and fundamental sciences. Present key questions address the dynamics of the spin system and emergent topological defects.

View Article and Find Full Text PDF