Publications by authors named "K Korach"

Normal ovarian function requires the expression of estrogen receptors α (ESR1) and β (ESR2) in distinct cell types within the ovary. The double estrogen receptor knockout (αβERKO) ovary had the appearance of seminiferous tubule-like structures that expressed SOX9; this phenotype was lost when the animals were repeatedly backcrossed to the C57BL/6J genetic background. A new line of ERKO mice, Ex3αβERKO, was developed for targeted disruption on a mixed genetic background.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is an extensive capillary network that protects the brain from environmental and metabolic toxins while limiting drug delivery to the central nervous system (CNS). The ATP-binding cassette transporter breast cancer resistance protein (Bcrp) reduces drug delivery across the BBB by actively transporting its clinical substrates back into peripheral circulation before their entry into the CNS compartment. 17β-Estradiol (E2)-elicited changes in Bcrp transport activity and expression have been documented previously.

View Article and Find Full Text PDF

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.

View Article and Find Full Text PDF

Estrogen actions are mediated by both nuclear (n) and membrane (m) localized estrogen receptor 1 (ESR1). Male Esr1 knockout (Esr1KO) mice lacking functional Esr1 are infertile, with reproductive tract abnormalities. Male mice expressing nESR1 but lacking mESR1 (nuclear-only estrogen receptor 1 mice) are progressively infertile due to testicular, rete testis, and efferent ductule abnormalities similar to Esr1KO males, indicating a role for mESR1 in male reproduction.

View Article and Find Full Text PDF

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands.

View Article and Find Full Text PDF