Publications by authors named "K Klocke"

Quantum circuits utilizing measurement to evolve a quantum wave function offer a new and rich playground to engineer unconventional entanglement dynamics. Here, we introduce a hybrid, nonreciprocal setup featuring a quantum circuit, whose updates are conditioned on the state of a classical dynamical agent. In our example the circuit is represented by a Majorana quantum chain controlled by a classical N-state Potts chain undergoing pair flips.

View Article and Find Full Text PDF

Cerebral malaria is a potentially lethal disease, which is caused by excessive inflammatory responses to parasites. Here we use a newly developed transgenic ANKA () parasite that can be used to study parasite-specific T cell responses. Our present study demonstrates that mice, which lack type I interferon receptor-dependent signaling, are protected from experimental cerebral malaria (ECM) when infected with this novel parasite.

View Article and Find Full Text PDF

Motivated by recent experiments on the Kitaev honeycomb magnet α-RuCl_{3}, we introduce time-domain probes of the edge and quasiparticle content of non-Abelian spin liquids. Our scheme exploits ancillary quantum spins that communicate via time-dependent tunneling of energy into and out of the spin liquid's chiral Majorana edge state. We show that the ancillary-spin dynamics reveals the edge-state velocity and, in suitable geometries, detects individual non-Abelian anyons and emergent fermions via a time-domain counterpart of quantum-Hall anyon interferometry.

View Article and Find Full Text PDF

Signatures of self-organized criticality (SOC) have recently been observed in an ultracold atomic gas under continuous laser excitation to strongly interacting Rydberg states [S. Helmrich et al., Nature, 577, 481-486 (2020)].

View Article and Find Full Text PDF

The introduction of the CTLA-4 recombinant fusion protein has demonstrated therapeutic effects by selectively modulating T-cell activation in rheumatoid arthritis. Here we show, using a forward genetic approach, that a mutation in the SH3gl1 gene encoding the endocytic protein Endophilin A2 is associated with the development of arthritis in rodents. Defective expression of SH3gl1 affects T cell effector functions and alters the activation threshold of autoreactive T cells, thereby leading to complete protection from chronic autoimmune inflammatory disease in both mice and rats.

View Article and Find Full Text PDF