Flagellin, the TLR5 agonist, shows potent adjuvant activities in diverse vaccines and immunotherapies. Vibrio vulnificus flagellin B expressed in eukaryotic cells (eFlaB) could not stimulate TLR5 signaling. Enzymatic deglycosylation restored eFlaB's TLR5 stimulating functionality, suggesting that glycosylation interferes with eFlaB binding to TLR5.
View Article and Find Full Text PDFTargeting - and -deficient tumors through synthetic lethality using poly(ADP-ribose) polymerase inhibitors (PARPi) has emerged as a successful strategy for cancer therapy. PARPi monotherapy has shown excellent efficacy and safety profiles in clinical practice but is limited by the need for tumor genome mutations in or other homologous recombination genes as well as the rapid emergence of resistance. In this study, we identified 2-chloro--diethylethanamine hydrochloride (CDEAH) as a small molecule that selectively kills - and xeroderma pigmentosum A-deficient cells.
View Article and Find Full Text PDFAutophagy functions in cellular quality control and metabolic regulation. Dysregulation of autophagy is one of the major pathogenic factors contributing to the progression of nonalcoholic fatty liver disease (NAFLD). Autophagy is involved in the breakdown of intracellular lipids and the maintenance of healthy mitochondria in NAFLD.
View Article and Find Full Text PDFReplication protein A (RPA), a eukaryotic single-stranded DNA (ssDNA) binding protein, dynamically interacts with ssDNA in different binding modes and plays essential roles in DNA metabolism such as replication, repair, and recombination. RPA accumulation on ssDNA due to replication stress triggers the DNA damage response (DDR) by activating the ataxia telangiectasia and RAD3-related (ATR) kinase, which phosphorylates itself and downstream DDR factors, including RPA. We recently reported that the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF), a neuronal protein associated with Kallmann syndrome, promotes RPA32 phosphorylation via ATR upon replication stress.
View Article and Find Full Text PDFThe use of appropriately designed immunotherapeutic bacteria is an appealing approach to tumor therapy because the bacteria specifically target tumor tissue and deliver therapeutic payloads. The present study describes the engineering of an attenuated strain of Salmonella typhimurium deficient in ppGpp biosynthesis (SAM) that could secrete Vibrio vulnificus flagellin B (FlaB) conjugated to human (hIL15/FlaB) and mouse (mIL15/FlaB) interleukin-15 proteins in the presence of L-arabinose (L-ara). These strains, named SAMphIF and SAMpmIF, respectively, secreted fusion proteins that retained bioactivity of both FlaB and IL15.
View Article and Find Full Text PDF