Publications by authors named "K Kelley"

Understanding ferroelectric domain wall dynamics at the nanoscale across a broad range of timescales requires measuring domain wall position under different applied electric fields. The success of piezoresponse force microscopy (PFM) as a tool to apply local electric fields at different positions and imaging their changing position, together with the information obtained from associated switching spectroscopies has fueled numerous studies of the dynamics of ferroelectric domains to determine the impact of intrinsic parameters such as crystalline order, defects and pinning centers, as well as boundary conditions such as environment. However, the investigation of sub-coercive reversible domain wall vibrational modes requires the development of new tools that enable visualizing domain wall motion under varying applied fields with high temporal and spatial resolution while also accounting for spurious electrostatic effects.

View Article and Find Full Text PDF

Proximity ferroelectricity is an interface-associated phenomenon in electric-field-driven polarization reversal in a non-ferroelectric polar material induced by one or more adjacent ferroelectric materials. Here we report proximity ferroelectricity in wurtzite ferroelectric heterostructures. In the present case, the non-ferroelectric layers are AlN and ZnO, whereas the ferroelectric layers are AlBN, AlScN and ZnMgO.

View Article and Find Full Text PDF

Cholera rapid diagnostic tests (RDTs) are vulnerable to virulent bacteriophage predation. We hypothesized that an enhanced cholera RDT that detects the common virulent bacteriophage ICP1 might serve as a proxy for pathogen detection. We previously developed a monoclonal antibody (mAb) to the ICP1 major capsid protein.

View Article and Find Full Text PDF
Article Synopsis
  • Multiferroic materials combine ferroelectricity and magnetism, making them promising for applications like magnetic memory and spin transistors.
  • A new multiferroic chalcogenide semiconductor, CuMnSiTe, demonstrates unique properties such as a polar monoclinic crystal structure and canted antiferromagnetism below 35 K, along with significant magnetoelectric coupling.
  • Observations include high electric polarization at low temperatures and the potential for room-temperature ferroelectricity, marking it as a significant advancement in multiferroic materials research.
View Article and Find Full Text PDF

Background: The American Association of Colleges of Pharmacy Curriculum Outcomes and Entrustable Professional Activities (COEPA) recognize the need for social determinants of health (SDH) education for pharmacy learners. However, there is a dearth of published strategies for incorporating comprehensive SDH education in Doctor of Pharmacy curricula. The objectives of this study were to: 1) highlight unpublished exemplars of SDH teaching models and 2) propose strategies for teaching SDH.

View Article and Find Full Text PDF