Publications by authors named "K Keegstra"

Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex.

View Article and Find Full Text PDF

Xyloglucan (XyG) is an abundant component of the primary cell walls of most plants. While the structure of XyG has been well studied, much remains to be learned about its biosynthesis. Here we employed reverse genetics to investigate the role of cellulose synthase like-C (CSLC) proteins in XyG biosynthesis.

View Article and Find Full Text PDF

Mixed-linkage (1,3;1,4)-β-glucan (MLG) is a glucose polymer with beneficial effects on human health and high potential for the agricultural industry. MLG is present predominantly in the cell wall of grasses and is synthesized by cellulose synthase-like F or H families of proteins, with CSLF6 being the best-characterized MLG synthase. Although the function of this enzyme in MLG production has been established, the site of MLG synthesis in the cell is debated.

View Article and Find Full Text PDF

Xyloglucan (XyG) is a matrix polysaccharide that is present in the cell walls of all land plants. It consists of a β-1,4-linked glucan backbone that is further substituted with xylosyl residues. These xylosyl residues can be further substituted with other glycosyl and nonglycosyl substituents that vary depending on the plant family and specific tissue.

View Article and Find Full Text PDF

Mixed-linkage glucan (MLG) is a significant cell wall carbohydrate in grasses and an important carbon source for human consumption and biofuel production. MLG biosynthesis depends on the biochemical activity of membrane spanning glucan synthases encoded by the CSLH and CSLF cellulose synthase-like gene families. CSLF proteins are the best characterized to date but relatively little information is known about their topology with respect to the biosynthetic membranes.

View Article and Find Full Text PDF