Publications by authors named "K Kapp"

Benign prostatic hyperplasia (BPH) is a common condition marked by the enlargement of the prostate gland, which often leads to significant urinary symptoms and a decreased quality of life. The development of clinically relevant animal models is crucial for understanding the pathophysiology of BPH and improving treatment options. This study aims to establish a patient-derived xenograft (PDX) model using benign prostatic tissues to explore the molecular and cellular mechanisms of BPH.

View Article and Find Full Text PDF

The fading efficacy of antibiotics is a growing global health concern due to its life-threatening consequences and increased healthcare costs. Non-genetic mechanisms of antimicrobial resistance, such as those employed by Chlamydia pneumoniae and Chlamydia trachomatis, complicate treatment as these bacteria can enter a non-replicative, persistent state under stress, evading antibiotics and linking to inflammatory conditions. Understanding chlamydial persistence at the molecular level is challenging, and new models for studying Chlamydia-host interactions in vivo are urgently needed.

View Article and Find Full Text PDF

Background: Sepsis is a common and deadly syndrome, accounting for more than 11 million deaths annually. To mature a deeper understanding of the host and pathogen mechanisms contributing to poor outcomes in sepsis, and thereby possibly inform new therapeutic targets, sophisticated, and expensive biorepositories are typically required. We propose that remnant biospecimens are an alternative for mechanistic sepsis research, although the viability and scientific value of such remnants are unknown.

View Article and Find Full Text PDF

Plant pomaces in suitable forms (powders, extracts) can be used in foods of animal origin to increase the nutritional value and safety of these foods. In the present study, water extracts of apple, black currant, rhubarb and tomato pomaces were used in fish marinade solutions to evaluate their effect on the growth dynamics of microorganisms and the growth potential of by challenge testing. The results showed that mesophilic aerobic microorganisms, spp.

View Article and Find Full Text PDF

Toxic aggregation of pathogenic huntingtin protein (htt) is implicated in Huntington's disease and influenced by various factors, including the first seventeen amino acids at the N-terminus (Nt17) and the presence of lipid membranes. Nt17 has a propensity to form an amphipathic α-helix in the presence of binding partners, which promotes α-helix rich oligomer formation and facilitates htt/lipid interactions. Within Nt17 are multiple sites that are subject to post-translational modification, including acetylation and phosphorylation.

View Article and Find Full Text PDF