Conclusion: Current neurotransmission models based on animal studies on the mammalian inner ear not always reflect the situation in human. Rodents and primates show significant differences in characteristics of efferent innervation as well as the distribution of neuroactive substances.
Objective: Immunohistochemistry demonstrates the mammalian efferent system as neurochemically complex and diverse: several neuroactive substances may co-exist within the same efferent terminal.
Voltage-gated Ca(2+) channels formed by subunits (class D Ca(2+) channels) tightly regulate neurotransmitter release from cochlear inner hair cells (IHCs) by controlling the majority of depolarisation-induced Ca(2+) entry. We have recently shown that the absence of these channels can cause deafness and degeneration of outer hair cells (OHCs) and IHCs in alpha1D-deficient mice (alpha1D(-/-)) (Platzer et al., 2000.
View Article and Find Full Text PDFOlivocochlear efferent neurons originate in the superior olivary complex of the brainstem and terminate within sensory cell regions of the organ of Corti. Components of this complex include the lateral olivocochlear bundle whose unmyelinated axons synapse with radial afferent dendrites below inner hair cells and the medial olivocochlear bundle, from which myelinated axons form a direct synaptic contact with outer hair cells. gamma-Aminobutyric acid (GABA), a major neurotransmitter of the central nervous system believed to be responsible for most fast-inhibitory transmissions, has been demonstrated with interspecies variation between mammal and primate auditory efferents.
View Article and Find Full Text PDFNaturally occurring mutant mice provide an excellent model for the study of genetic malformations of the inner ear. Mice homozygous for the Bronx waltzer (bv/bv) mutation are severely hearing impaired or deaf and exhibit a 'waltzing' gait. Functional aspects of cochlear and vestibular efferents in the bv/bv mutant mouse are not well known.
View Article and Find Full Text PDFThe two most abundant proteins of the organ of Corti, OCP1 and OCP2, are acidic, cytosolic, low molecular weight proteins diffusely distributed within the cytoplasm of supporting cells. A recent study by Henzl et al. (2001) found first, that these two proteins co-localize with connexin 26 along the epithelial gap junction system and second, that OCP2 could participate with OCP1 in an organ of Corti-specific SCF complex (Skp1, cul1in, and Fbp), a ubiquitin ligase complex.
View Article and Find Full Text PDF