Background: Cell therapy using neural progenitor cells (NPCs) is a promising approach for ischemic stroke treatment according to the results of multiple preclinical studies in animal stroke models. In the vast majority of conducted animal studies, the therapeutic efficacy of NPCs was estimated after intracerebral transplantation, while the information of the effectiveness of systemic administration is limited. Nowadays, several clinical trials aimed to estimate the safety and efficacy of NPCs transplantation in stroke patients were also conducted.
View Article and Find Full Text PDFWe studied therapeutic efficacy and migration characteristics of mesenchymal stem cells isolated from the human placenta after their intracerebral (stereotactic) administration to rats with the experimental ischemic stroke. It was shown that cell therapy significantly improved animal survival rate and reduced the severity of neurological deficit. New data on the migration pathways of transplanted cells in the brain were obtained.
View Article and Find Full Text PDFMore than 50% cells isolated from the endometrial cavity scraping and the myometrium of the rudimentary horn of an underdeveloped uterus removed from a patient with uterine aplasia and maintained under culturing conditions normal for mesenchymal stem cells (MSC) expressed embryonic transcription factors Oct4 and Nanog, embryonic cell membrane sialyl glycolipid SSEA4, and MSC markers. After 2-3 passages, the cells lost the expression of the early embryogenesis markers, but retained MSC markers. The presence of dormant stem cells in the underdeveloped endometrium and in the uterus indicates that this tissue has a regenerative potential that can be activated and used for completion of organ morphogenesis.
View Article and Find Full Text PDFPolymers (Basel)
September 2022
Restoring the anatomical and functional characteristics of the cornea using various biomaterials is especially relevant in the context of a global shortage of donor tissue. Such biomaterials must be biocompatible, strong, and transparent. Here, we report a Viscoll collagen membrane with mechanical and optical properties suitable for replacing damaged stromal tissue.
View Article and Find Full Text PDF