Massively Parallel Sequencing (MPS) has gained interest in the forensic community over the past decade. Most of the published MPS methods focus on specialty applications intended for use in a limited number of samples with protocols that are relatively laborious. Recent developments using Reverse-Complement PCR enable an efficient MPS protocol suited for routine analysis of high numbers of samples.
View Article and Find Full Text PDFIntroduction: The field of forensic DNA analysis has undergone rapid advancements in recent decades. The integration of massively parallel sequencing (MPS) has notably expanded the forensic toolkit, moving beyond identity matching to predicting phenotypic traits and biogeographical ancestry. This shift is of particular significance in cases where conventional DNA profiling fails to identify a single suspect.
View Article and Find Full Text PDFThe DNA Commission of the International Society for Forensic Genetics (ISFG) has developed a set of nomenclature recommendations for short tandem repeat (STR) sequences. These recommendations follow the 2016 considerations of the DNA Commission of the ISFG, incorporating the knowledge gained through research and population studies in the intervening years. While maintaining a focus on backward compatibility with the CE data that currently populate national DNA databases, this report also looks to the future with the establishment of recommended minimum sequence reporting ranges to facilitate interlaboratory comparisons, automated solutions for sequence-based allele designations, a suite of resources to support bioinformatic development, guidance for characterizing new STR loci, and considerations for incorporating STR sequences and other new markers into investigative databases.
View Article and Find Full Text PDFTobacco smoking is a frequent habit sustained by > 1.3 billion people in 2020 and the leading preventable factor for health risk and premature mortality worldwide. In the forensic context, predicting smoking habits from biological samples may allow broadening DNA phenotyping.
View Article and Find Full Text PDFThe introduction of massively parallel sequencing in forensic analysis has been facilitated with typing kits, analysis software and allele naming tools such as the ForenSeq DNA Signature Prep (DSP) kit, FDSTools and STRNaming respectively. Here we describe how FDSTools 2.0 with integrated and refined STRNaming nomenclature was validated for implementation under ISO 17025 accreditation for the ForenSeq DSP kit.
View Article and Find Full Text PDF