Publications by authors named "K J Schleifer"

Binding site flexibility and dynamics strongly affect the ability of proteins to accommodate substrates and inhibitors. The significance of these properties is particularly pronounced for proteins that are inherently flexible, such as cytochrome P450 enzymes (CYPs). While the research on human CYPs provides detailed knowledge on both structural and functional level, such analyses are still lacking for their plant counterparts.

View Article and Find Full Text PDF

Phosphorous (P) resources are finite. Sewage sludge recyclates (SSR) are not only of interest as plant fertilizer but also as potential source of minerals in animal nutrition. However, besides P and calcium (Ca), SSR contain heavy metals.

View Article and Find Full Text PDF

Risk assessment of newly synthesised chemicals is a prerequisite for regulatory approval. In this context, in silico methods have great potential to reduce time, cost, and ultimately animal testing as they make use of the ever-growing amount of available toxicity data. Here, KnowTox is presented, a novel pipeline that combines three different in silico toxicology approaches to allow for confident prediction of potentially toxic effects of query compounds, i.

View Article and Find Full Text PDF

Disturbance of the thyroid hormone homeostasis has been associated with adverse health effects such as goiters and impaired mental development in humans and thyroid tumors in rats. In vitro and in silico methods for predicting the effects of small molecules on thyroid hormone homeostasis are currently being explored as alternatives to animal experiments, but are still in an early stage of development. The aim of this work was the development of a battery of in silico models for a set of targets involved in molecular initiating events of thyroid hormone homeostasis: deiodinases 1, 2, and 3, thyroid peroxidase (TPO), thyroid hormone receptor (TR), sodium/iodide symporter, thyrotropin-releasing hormone receptor, and thyroid-stimulating hormone receptor.

View Article and Find Full Text PDF

4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the second reaction in the tyrosine catabolism and is linked to the production of cofactors plastoquinone and tocopherol in plants. This important biological role has put HPPD in the focus of current herbicide design efforts including the development of herbicide-tolerant mutants. However, the molecular mechanisms of substrate binding and herbicide tolerance have yet to be elucidated.

View Article and Find Full Text PDF