Multi-energy computed tomography (MECT) offers the opportunity for advanced visualization, detection, and quantification of select elements (e.g., iodine) or materials (e.
View Article and Find Full Text PDFJ Appl Clin Med Phys
October 2021
A novel routine dual-energy computed tomography (DECT) quality control (QC) program was developed to address the current deficiency of routine QC for this technology. The dual-energy quality control (DEQC) program features (1) a practical phantom with clinically relevant materials and concentrations, (2) a clinically relevant acquisition, reconstruction, and postprocessing protocol, and (3) a fully automated analysis software to extract quantitative data for database storage and trend analysis. The phantom, designed for easy set up for standalone or adjacent imaging next to the ACR phantom, was made in collaboration with an industry partner and informed by clinical needs to have four iodine inserts (0.
View Article and Find Full Text PDFBackground: TomoTherapy (Accuray, USA) has an image-guided radiotherapy system with a megavoltage (MV) X-ray source and an on-board imaging device. This system allows one to acquire the delivery sinogram during the actual treatment, which partly includes information from the irradiated object. In this study, we try to develop image reconstruction during treatment with helical tomotherapy.
View Article and Find Full Text PDFStereotactic body radiation therapy (SBRT) treatments have high-dose gradients and even slight patient misalignment from the simulation to treatment could lead to target underdosing or organ at risk (OAR) overdosing. Daily real-time SBRT treatment planning could minimize the risk of geographic miss. As an initial step toward determining the clinical feasibility of developing real-time SBRT treatment planning, we determined the calculation time of helical TomoTherapy-based STAT radiation therapy (RT) treatment plans for simple liver, lung, and spine SBRT treatments to assess whether the planning process was fast enough for practical clinical implementation.
View Article and Find Full Text PDFIMRT delivery follows a planned leaf sequence, which is optimized before treatment delivery. However, it is hard to model real-time variations, such as respiration, in the planning procedure. In this paper, we propose a negative feedback system of IMRT delivery that incorporates real-time optimization to account for intra-fraction motion.
View Article and Find Full Text PDF