Neurons in the mouse auditory cortex are strongly influenced by behavior, including both suppression and enhancement of sound-evoked responses during movement. The mouse auditory cortex comprises multiple fields with different roles in sound processing and distinct connectivity to movement-related centers of the brain. Here, we asked whether movement-related modulation in male mice might differ across auditory cortical fields, thereby contributing to the heterogeneity of movement-related modulation at the single-cell level.
View Article and Find Full Text PDFNeurons in the mouse auditory cortex are strongly influenced by behavior, including both suppression and enhancement of sound-evoked responses during movement. The mouse auditory cortex comprises multiple fields with different roles in sound processing and distinct connectivity to movement-related centers of the brain. Here, we asked whether movement-related modulation might differ across auditory cortical fields, thereby contributing to the heterogeneity of movement-related modulation at the single-cell level.
View Article and Find Full Text PDFThe spectral content of skin vibrations, produced by either displacing the finger across a surface texture or passively sensing external movements through the solid substrate, provides fundamental information about our environment. Low-frequency flutter (below 50 Hz) applied locally to the primate fingertip evokes cyclically entrained spiking in neurons of the primary somatosensory cortex (S1), and thus spike rates in these neurons increase linearly with frequency. However, the same local vibrations at high frequencies (over 100 Hz) cannot be discriminated on the basis of differences in discharge rates of S1 neurons, because spiking is only partially entrained at these frequencies.
View Article and Find Full Text PDFMammalian motor cortex consists of several interconnected subregions thought to play distinct roles in voluntary movements, yet their specific role in decision making and execution is not completely elucidated. Here we used transient optogenetic inactivation of the caudal forelimb area (CFA) and rostral forelimb area (RFA) in mice as they performed a directional joystick task. Based on a vibrotactile cue applied to their forepaw, mice were trained to push or pull a joystick after a delay period.
View Article and Find Full Text PDF