Phys Chem Chem Phys
September 2021
Correction for 'Flexible lipid nanomaterials studied by NMR spectroscopy' by K. J. Mallikarjunaiah et al.
View Article and Find Full Text PDFOur review addresses how material properties emerge from atomistic-level interactions in the case of lipid membrane nanostructures. We summarize advances in solid-state nuclear magnetic resonance (NMR) spectroscopy in conjunction with alternative small-angle X-ray and neutron scattering methods for investigating lipid flexibility and dynamics. Solid-state 2H NMR is advantageous in that it provides atomistically resolved information about the order parameters and mobility of phospholipids within liquid-crystalline membranes.
View Article and Find Full Text PDFThis article reviews the application of solid-state ²H nuclear magnetic resonance (NMR) spectroscopy for investigating the deformation of lipid bilayers at the atomistic level. For liquid-crystalline membranes, the average structure is manifested by the segmental order parameters (SCD) of the lipids. Solid-state ²H NMR yields observables directly related to the stress field of the lipid bilayer.
View Article and Find Full Text PDFLipid bilayers represent a fascinating class of biomaterials whose properties are altered by changes in pressure or temperature. Functions of cellular membranes can be affected by nonspecific lipid-protein interactions that depend on bilayer material properties. Here we address the changes in lipid bilayer structure induced by external pressure.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
October 2008
(CH(3))(4)NPF(6) is studied by NMR measurements to understand the internal motions and cross relaxation mechanism between the heterogeneous nuclei. The spin lattice relaxation times (T(1)) are measured for (1)H and (19)F nuclei, at three (11.4, 16.
View Article and Find Full Text PDF