Publications by authors named "K J Laflin"

Calcium phosphate-decorated polyester matrices are promising scaffolds for bone tissue engineering that combine the tunable degradation of synthetic polymers and the osteoconductivity of calcium phosphate minerals. In this study, scaffolds decorated with stabilized amorphous calcium phosphate (ACP) minerals-which exhibit sustained dissolution and release of calcium and phosphate ions-were tested for their ability to support osteoblast proliferation and stimulate differentiation. The two ACPs tested were zirconia-hybridized ACP (ZrACP), which releases ions over a few days and converts in aqueous solution to hydroxyapatite (HAP), and zinc-hybridized ACP (ZnACP), which has a longer period of sustained ion release.

View Article and Find Full Text PDF

Although hydroxyapatite (HAP) and β-tricalcium phosphate have been used extensively as osteoconductive minerals in biomaterial scaffolds for bone regeneration, they lack the capacity to stimulate osteoblastic differentiation of progenitor cells. In contrast, amorphous calcium phosphates (ACPs), which convert to HAP under aqueous conditions, have the potential to facilitate osteoblastic differentiation through the transient local release of calcium and phosphate ions. Therefore, in this study ACPs were synthesized using zinc and zirconia divalent cations as stabilizers (denoted ZnACP and ZrACP, respectively) and compared to HAP.

View Article and Find Full Text PDF

We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates.

View Article and Find Full Text PDF

We recently reported the cloning of WWOX, a gene that maps to the common fragile site FRA16D region in chromosome 16q23.3-24.1.

View Article and Find Full Text PDF