Introduction: The Central Autonomic Network (CAN), which involves complex interconnected brain regions that modulate the autonomic nervous system, may be key to understanding higher risk for psychosocial and behavioral challenges in preterm neonates.
Methods: We compared resting state functional connectivity of the CAN in 94 healthy term-born controls and 94 preterm infants at term-equivalent age (TEA). In preterm infants we correlated CAN connectivity with postmenstrual age (PMA).
Background: Intravenous lipid emulsions are an essential component of nutritional support for very preterm infants. Many neonatal intensive care units have transitioned from traditional soybean oil-only to fish oil-containing multicomponent lipid emulsions, but the neurodevelopmental implications have not been well-explored. The primary aim of this study was to assess extrauterine third trimester brain growth in very preterm infants supported with soybean oil-only compared to fish-oil containing multicomponent lipid emulsions; white matter development and neurobehavioral regulation at term were also investigated.
View Article and Find Full Text PDFPurpose: Functional connectivity hubs were previously identified at the source level in low-risk full-term newborns by high-density electroencephalography (HD-EEG). However, the directionality of information flow among hubs remains unclear. The aim of this study was to study the directionality of information flow among source level hubs in low-risk full-term newborns using HD-EEG.
View Article and Find Full Text PDFIntroduction: Placental health is vital for maternal and fetal well-being, and placental T2∗ has been suggested to identify in vivo placental dysfunction prior to delivery. However, ideal regions of interest to best inform functional assessments of the placenta remain unknown. The aim of this study is to compare global and slice-wise measures of in-vivo placental T2∗ assessments.
View Article and Find Full Text PDFTo assess the impact of postnatal processing on placental DNA methylation, array data from flash-frozen placental tissue was compared to perfluorocarbon-immersed and formalin-fixed paraffin-embedded placental tissue. We observed that tissue exposed to perfluorocarbon showed no significant DNA methylation differences when compared to unprocessed tissue, while formalin processing altered the quality and reliability of the data produced on the DNA methylation array platform. Placental DNA methylation allows for the study of gene-environment interactions that influence the fetal environment and development.
View Article and Find Full Text PDF