The transmission dynamics of HIV are closely tied to the duration and overlap of sexual partnerships. We develop an autonomous population model that can account for the possibilities of an infection from either a casual sexual partner or a long-term partner who was either infected at the start of the partnership or has been newly infected since the onset of the partnership. The impact of the long-term partnerships on the rate of infection is captured by calculating the expected values of the rate of infection from these extended contacts.
View Article and Find Full Text PDFA model with both casual and long-term partnerships is considered with respect to the impact of a pre-exposure prophylaxis (PrEP) on the spread of HIV. We consider the effect of the effectiveness of PrEP, the rate that susceptible individuals choose to take PrEP, and compliance with the daily dose of the pre-exposure prophylaxis. The rate of infection in long-term partnerships is computed using a linearized expected value as a means for including the nonlocal effects of long-term partnerships while maintaining computational feasibility.
View Article and Find Full Text PDFOn February 5 the Japanese government ordered the passengers and crew on the Diamond Princess to start a two week quarantine after a former passenger tested positive for COVID-19. During the quarantine the virus spread rapidly throughout the ship. By February 20, there were 651 cases.
View Article and Find Full Text PDF