The dorsolateral prefrontal cortex (DLPFC) plays a crucial role in primate cognition, integrating multimodal information to generate top-down signals for cognitive control. During cognitive tasks, the DLPFC displays activity patterns of exceptional complexity and duration not observed in other cortical areas or species. These activity patterns are likely associated with the unique physiological and morphological properties of primate DLPFC pyramidal neurons (PNs).
View Article and Find Full Text PDFPurpose: We measured corticosteroid medication adherence (CMA) in sarcoidosis patients and analyzed if demographic and clinical factors, beliefs about medications, corticosteroid side-effects, psychosocial status, and the doctor-patient relationship were associated with corticosteroid adherence.
Methods: Sarcoidosis patients receiving corticosteroids were eligible to participate. CMA was measured using the Medication Adherence Response Scale-10 (MARS-10), a validated patient reported outcome measure (PRO).
Aims: Vein grafts are used for many indications, including bypass graft surgery and arteriovenous fistula (AVF) formation. However, patency following vein grafting or AVF formation is suboptimal for various reasons, including thrombosis, neointimal hyperplasia, and adverse remodelling. Recently, endothelial-to-mesenchymal transition (EndMT) was found to contribute to neointimal hyperplasia in mouse vein grafts.
View Article and Find Full Text PDFUnlabelled: In schizophrenia, layer 3 pyramidal neurons (L3PNs) in the dorsolateral prefrontal cortex (DLPFC) are thought to receive fewer excitatory synaptic inputs and to have lower expression levels of activity-dependent genes and of genes involved in mitochondrial energy production. In concert, these findings from previous studies suggest that DLPFC L3PNs are hypoactive in schizophrenia, disrupting the patterns of activity that are crucial for working memory, which is impaired in the illness. However, whether lower PN activity produces alterations in inhibitory and/or excitatory synaptic strength has not been tested in the primate DLPFC.
View Article and Find Full Text PDF