Interleukin-2 (IL-2) potently stimulates natural killer (NK) cell proliferation and cytotoxic function. However, the molecular mechanisms by which IL-2 delivers activation signals from the IL-2 receptor to the NK cell interior are incompletely understood. Previous studies demonstrated that IL-2 stimulation induced the tyrosine phosphorylation of multiple proteins in NK cells, together with a prominent reduction in the electrophoretic mobility of p56lck.
View Article and Find Full Text PDFAntibody-dependent cellular cytotoxicity is initiated when low affinity Fc receptors (Fc gamma R type III/CD16) on NK cells bind to sensitized (i.e., antibody coated) target cells.
View Article and Find Full Text PDFNatural killer (NK) cells are a unique subpopulation of lymphocytes with the capability to kill malignant cells via one of two alternative mechanisms: (i) Fc receptor-dependent cytotoxicity against antibody-coated targets or (ii) direct cell-mediated cytotoxicity. However, the molecular mechanisms that trigger and subsequently regulate NK cell cytotoxicity are incompletely understood. We have therefore investigated the role of protein tyrosine phosphorylation in the transmembrane signaling initiated after Fc receptor stimulation or direct tumor cell contact in clonal CD16+/CD3- human NK cells.
View Article and Find Full Text PDFProtein tyrosine kinases play fundamental roles in the transduction of signals that regulate cell growth, differentiation, and functional responses to a diversity of external stimuli. It is therefore likely that understanding protein tyrosine kinase activity in NK cells will be crucial in further defining the intracellular regulation of their unique and specialized functions. We investigated the role of protein tyrosine phosphorylation in receptor-mediated signal transduction using stimuli known to play major roles in regulating NK cell activation.
View Article and Find Full Text PDFRecent investigations have confirmed the presence of the polyphosphoinositides, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate (PIP(2)), as well as inositol phospholipid-specific phospholipase C in higher plant and microalgal cells. In addition, it has been shown that stimulation of some photosynthetic cell types by environmental or hormonal challenge is accompanied by degradation of the polyphosphoinositides. The products of phospholipase C-catalyzed PIP(2) hydrolysis, inositol 1,4,5-trisphosphate and diacylglycerol, appear to be capable of releasing organelle-bound Ca(2+) and stimulating protein kinase C-like activity in vitro.
View Article and Find Full Text PDF