Engineered heart tissues (EHTs) are three-dimensional culture platforms with cardiomyocytes differentiated from human pluripotent stem cells (hPSCs) and were designed for assaying cardiac contractility. For drug development applications, EHTs must have a stable function and provide reproducible results. We investigated these properties with EHTs made with different tissue casting batches and lines of differentiated hPSC-cardiomyocytes and analyzed them at different times after being fabricated.
View Article and Find Full Text PDFBackground: A major challenge for most tuberculosis programs is the inability of tuberculosis patients to complete treatment for one reason or another. Failure to complete the treatment contributes to the emergence of multidrug-resistant TB. This study aimed to evaluate the risk factors for time to loss to follow-up treatment by considering death as a competing risk event among tuberculosis patients admitted to directly observed treatment short course at Ambo General Hospital, Ambo, Ethiopia.
View Article and Find Full Text PDFBackground: Glaucoma is a significant public health problem due to its substantial increase in the projected number of glaucoma cases. In Ethiopia, glaucoma accounts for 5.2% of irreversible blindness and is the fifth main cause of blindness.
View Article and Find Full Text PDFLiver microphysiological systems (MPSs) are promising models for predicting hepatic drug effects. Yet, after a decade since their introduction, MPSs are not routinely used in drug development due to lack of criteria for ensuring reproducibility of results. We characterized the feasibility of a liver MPS to yield reproducible outcomes of experiments assaying drug toxicity, metabolism, and intracellular accumulation.
View Article and Find Full Text PDFExp Biol Med (Maywood)
February 2021
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects.
View Article and Find Full Text PDF