Mode-locked lasers are of interest for applications such as biological imaging, nonlinear frequency conversion, and single-photon generation. In the infrared, chip-integrated mode-locked lasers have been demonstrated through integration of laser diodes with low-loss photonic circuits. However, additional challenges, such as a higher propagation loss and smaller alignment tolerances, have prevented the realization of such lasers in the visible range.
View Article and Find Full Text PDFWe present hybrid-integrated extended cavity diode lasers tunable around 637 nm, with a gain-wide spectral coverage of 8 nm. This tuning range addresses the zero-phonon line of nitrogen-vacancy centers and includes the wavelength of HeNe lasers (633 nm). Best performance shows wide mode-hop free tuning up to 97 GHz and a narrow intrinsic linewidth down to 10 kHz.
View Article and Find Full Text PDFWe investigate on-chip spectral control of supercontinuum generation, taking advantage of the additional spatial degree of freedom in strongly-coupled dual-core waveguides. Using numerical integration of the multi-mode generalized nonlinear Schrödinger equation, we show that, with proper waveguide cross-section design, selective excitation of supermodes can vary the dispersion to its extremes, i.e.
View Article and Find Full Text PDFPorcine cytomegalovirus (PCMV) is widely distributed in pigs and difficult to detect due to latency. PCMV infection of source pigs was associated with early graft failure after cardiac and renal xenotransplantation into nonhuman primates. Importantly, PCMV infection of the first genetically modified pig heart into a human may have contributed to the reduced survival of the patient.
View Article and Find Full Text PDF