Purpose: Previous studies detailing the development of posterior subcapsular cataracts (PSC) in Royal College of Surgeons (RCS) rats have shown that aberrant fiber-end migration underlies the structural compromise. This investigation was conducted to examine the distribution of select basal membrane complex (BMC) components and to assess the intravitreal levels of specific cytokines during PSC formation.
Methods: Lenses from 52 RCS dystrophic rats (RCS/Lav) and 28 genetically matched control animals (RCS-rdy(+)/Lav) from 2 to 8 weeks old were used.
Purpose: Prior structural studies of posterior subcapsular cataract (PSC) development in Royal College of Surgeons (RCS) rats suggest that migration of basal fiber ends was disrupted, ultimately resulting in a PSC. Therefore the goal of this study was to assess the overall migration patterns as well as changes to the structure and cytoskeleton of basal fiber ends during PSC development.
Methods: Lenses from 48 RCS dystrophic rats (RCS/Lav) and 24 genetically matched control animals (RCS-rdy(+)/Lav) from 2 to 8 weeks old were examined.
This study describes a novel cytoskeletal array in fiber cells of the ocular lens of the rat and shows its relationship to the classical terminal web of other epithelial tissues. Naive adult Sprague-Dawley rats (n = 28) were utilized. F-actin, fodrin, myosin IIA, and CP49 distribution was assessed in anterior and posterior polar sections.
View Article and Find Full Text PDFThis study characterized early structural changes at posterior fiber ends in the crystalline lens after diabetic induction. Wistar rats (n = 49), randomized into one naïve control group and four experimental groups, were rendered diabetic via streptozotocin injection. Animals were euthanized at 1 week intervals, blood glucose levels recorded and lenses were evaluated grossly, by SEM and by confocal microscopy.
View Article and Find Full Text PDFPurpose: To localize specific components of the Basal Membrane Complex (BMC) of elongating lens fibers at defined points in their migration to the posterior sutures.
Methods: Normal, juvenile (4-6 week old) Sprague-Dawley rat lenses (n=46) were utilized. Lenses were either decapsulated to obtain whole mounts of lens capsules or sectioned with a vibrating knife microtome.