Complex and correlated quantum systems with promise for new functionality often involve entwined electronic degrees of freedom. In such materials, highly unusual properties emerge and could be the result of electron localization. Here, a cubic heavy fermion metal governed by spins and orbitals is chosen as a model system for this physics.
View Article and Find Full Text PDFThe numerical renormalization group is used to study quantum entanglement in the Kondo impurity model with a density of states ρ(ϵ)∝|ϵ|^{r} (0
Unconventional quantum criticality in heavy-fermion systems has been extensively analyzed in terms of a critical destruction of the Kondo effect. Motivated by a recent demonstration of quantum criticality in a mixed-valent heavy-fermion system, β-YbAlB(4), we study a particle-hole-asymmetric Anderson impurity model with a pseudogapped density of states. We demonstrate Kondo destruction at a mixed-valent quantum critical point, where a collapsing Kondo energy scale is accompanied by a singular charge-fluctuation spectrum.
View Article and Find Full Text PDFWe study two quantum dots embedded in the arms of an Aharonov-Bohm ring threaded by a magnetic flux. This system can be described by an effective one-impurity Anderson model with an energy- and flux-dependent density of states. For specific values of the flux, this density of states vanishes at the Fermi energy, yielding a controlled realization of the pseudogap Kondo effect.
View Article and Find Full Text PDFMotivated in part by quantum criticality in dissipative Kondo systems, we revisit the finite-size scaling of a classical Ising chain with 1/r;{2-} interactions. For 1/2<<1, the scaling of the dynamical spin susceptibility is sensitive to the degree of "winding" of the interaction under periodic boundary conditions. Infinite winding yields the expected mean-field behavior, whereas without any winding the scaling is of an interacting omega/T form.
View Article and Find Full Text PDF