Dynamical ordering from a disordered plastic flow to an anisotropically ordered smectic flow induced by a dc force has been studied in various many-particle systems, including vortices in type-II superconductors. However, it remains unclear whether the dynamical ordering is a true phase transition because of lack of suitable experimental methods. Here, we study the response of vortex flow to the transverse force using a cross-shaped amorphous Mo[Formula: see text]Ge[Formula: see text] film.
View Article and Find Full Text PDFPhys Rev Lett
November 2022
The Kibble-Zurek mechanism describes the formation of topological defects in systems crossing a continuous symmetry-breaking phase transition at a finite quench rate. While this mechanism has been extensively studied for equilibrium transitions, its applicability to nonequilibrium transitions has not yet been fully examined. Recent simulation has shown the applicability of the Kibble-Zurek mechanism to dynamical ordering transitions in particlelike assemblies, including superconducting vortices, driven over random disorder.
View Article and Find Full Text PDFBlood flow restriction (BFR) during low-intensity exercise has been known to be a potent procedure to alter metabolic and oxygen environments in working muscles. Moreover, the use of BFR during inter-set rest periods of repeated sprint exercise has been recently suggested to be a potent procedure for improving training adaptations. The present study was designed to determine the effect of repeated sprint exercise with post-exercise BFR (BFR during rest periods between sprints) on muscle oxygenation in working muscles.
View Article and Find Full Text PDFWe study the critical dynamics of vortices associated with dynamic disordering near the depinning transitions driven by dc force (dc current I) and vortex density (magnetic field B). Independent of the driving parameters, I and B, we observe the critical behavior of the depinning transitions, not only on the moving side, but also on the pinned side of the transition, which is the first convincing verification of the theoretical prediction. Relaxation times, [Formula: see text] and [Formula: see text], to reach either the moving or pinned state, plotted against I and B, respectively, exhibit a power-law divergence at the depinning thresholds.
View Article and Find Full Text PDF