ACS Appl Mater Interfaces
November 2024
Designing a functional surface that selectively adsorbs nanoparticles based on their size and shape is essential for developing an advanced adsorption-based, postsynthesis nanoparticle separation device. We demonstrate selective adsorption of larger nanoparticles from solution onto a polyelectrolyte brush by tuning the salt concentration. Specifically, a positively charged polyelectrolyte brush is created by converting pyridine groups of poly(2-vinylpyridine) to -methylpyridinium groups using methyl iodide.
View Article and Find Full Text PDFThis study examines nanoparticle diffusion in crowded polymer nanocomposites by diffusing small AlO nanoparticles (NPs) in SiO-loaded P2VP matrices. Time-of-flight secondary ion mass spectroscopy (ToF-SIMS) measures AlO NP diffusion coefficients within a homogeneous PNC background of larger, immobile SiO NPs. By developing a geometric model for the average interparticle distance in a system with two NP sizes, we quantify nanocomposite confinement relative to the AlO NP size with a bound layer.
View Article and Find Full Text PDFWhile recent efforts have shown how local structure plays an essential role in the dynamic heterogeneity of homogeneous glass-forming materials, systems containing interfaces such as thin films or composite materials remain poorly understood. It is known that interfaces perturb the molecular packing nearby, however, numerous studies show the dynamics are modified over a much larger range. Here, we examine the dynamics in polymer nanocomposites (PNCs) using a combination of simulations and experiments and quantitatively separate the role of polymer packing from other effects on the dynamics, as a function of distance from the nanoparticle surfaces.
View Article and Find Full Text PDFPrecise control of nanoparticles at interfaces can be achieved by designing stimuli-responsive surfaces that have tunable interactions with nanoparticles. In this study, we demonstrate that a polymer brush can selectively adsorb nanoparticles according to size by tuning the pH of the buffer solution. Specifically, we developed a facile polymer brush preparation method using a symmetric polystyrene--poly(2-vinylpyridine) (PS--P2VP) block copolymer deposited on a grafted polystyrene layer.
View Article and Find Full Text PDFPolyolefins compose the majority of plastic waste, but conventional mechanical recycling degrades their properties, thereby reducing their value. We report the functionalization of a model for dehydrogenated polyethylene, polycyclooctene (PCOE), with thiol-ene click chemistry to install pendant hydroxyl ethyl thioethers. Functionalization of PCOE using mercaptoethanol via thiol-ene click chemistry yielded functionalization between 1.
View Article and Find Full Text PDF