Publications by authors named "K I Spruijt"

Background: Pre-clinical studies demonstrate that delivering a high dose at a high dose rate result in less toxicity while maintaining tumor control, known as the FLASH effect. In proton therapy, clinical trials have started using 250 MeV transmission beams and more trials are foreseen. A novel aspect of FLASH treatments, compared to conventional radiotherapy, is the importance of dose rate next to dose and geometry.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed data from 66 UM patients, assessing 14 different dose-volume parameters and evaluating four toxicity profiles, including visual impairment and radiation-induced conditions.
  • * Results indicated that proton therapy often had advantages in reducing toxicity risks compared to SRT, particularly for higher-stage tumors, although the choice of treatment may depend on individual risk priorities.
View Article and Find Full Text PDF

Background & Purpose: Magnetic resonance imaging (MRI) is increasingly used in treatment preparation of ocular proton therapy, but its spatial accuracy might be limited by geometric distortions due to susceptibility artefacts. A correct geometry of the MR images is paramount since it defines where the dose will be delivered. In this study, we assessed the geometrical accuracy of ocular MRI.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate determination and verification of monitor units are vital for effective dose distribution in radiotherapy, particularly in ocular proton therapy for eye melanoma.
  • A multi-institutional study involving three European institutes aimed to create a generalized model for predicting monitor units using data from 3,748 patients and various machine learning algorithms.
  • The model showed promising results, achieving predictions within 3% uncertainty for 85.2% of plans and within 10% for 98.6% of plans, signifying a potential advancement in treatment planning systems.
View Article and Find Full Text PDF

Background: The first clinical trials to assess the feasibility of FLASH radiotherapy in humans have started (FAST-01, FAST-02) and more trials are foreseen. To increase comparability between trials it is important to assure treatment quality and therefore establish a standard for machine quality assurance (QA). Currently, the AAPM TG-224 report is considered as the standard on machine QA for proton therapy, however, it was not intended to be used for ultra-high dose rate (UHDR) proton beams, which have gained interest due to the observation of the FLASH effect.

View Article and Find Full Text PDF