Publications by authors named "K I Matthaei"

During activity, coordinated vasodilation of microcirculatory networks with upstream supply vessels increases blood flow to skeletal and cardiac muscles and reduces peripheral resistance. Endothelial dysfunction in humans attenuates activity-dependent vasodilation, resulting in exercise-induced hypertension in otherwise normotensive individuals. Underpinning activity-dependent hyperemia is an ascending vasodilation in which the endothelial gap junction protein, connexin (Cx)40, plays an essential role.

View Article and Find Full Text PDF

Unlabelled: Human respiratory syncytial virus (RSV) is a major cause of morbidity and severe lower respiratory tract disease in the elderly and very young, with some infants developing bronchiolitis, recurrent wheezing, and asthma following infection. Previous studies in humans and animal models have shown that vaccination with formalin-inactivated RSV (FI-RSV) leads to prominent airway eosinophilic inflammation following RSV challenge; however, the roles of pulmonary eosinophilia in the antiviral response and in disease pathogenesis are inadequately understood. In vivo studies in mice with eotaxin and/or interleukin 5 (IL-5) deficiency showed that FI-RSV vaccination did not lead to enhanced pulmonary disease, where following challenge there were reduced pulmonary eosinophilia, inflammation, Th2-type cytokine responses, and altered chemokine (TARC and CCL17) responses.

View Article and Find Full Text PDF

Mutant forms of connexin40 (Cx40) exist in the human population and predispose carriers to atrial fibrillation. Since endothelial expression of Cx40 is important for electrical and chemical communication within the arterial wall, carriers of mutant Cx40 proteins may be predisposed to peripheral arterial dysfunction and dysregulation of blood pressure. We have therefore studied mice expressing either a chemically dysfunctional mutant, Cx40T202S, or wild-type Cx40, with native Cx40, specifically in the endothelium.

View Article and Find Full Text PDF

Cardiovascular disease is characterised by reduced nitric oxide bioavailability resulting from oxidative stress. Our previous studies have shown that nitric oxide deficit per se increases the contribution of T-type calcium channels to vascular tone through increased superoxide from NADPH oxidase (Nox). The aim of the present study was therefore to identify the Nox isoform responsible for modulating T-type channel function, as T-type channels are implicated in several pathophysiological conditions involving oxidative stress.

View Article and Find Full Text PDF

Cytotoxic lymphocytes (CTL) have been reported to show a range of motility patterns from rapid long-range tracking to complete arrest, but how and whether these kinematics affect their ability to kill target cells is not known. Many in vitro killing assays utilize cell lines and tumour-derived cells as targets, which may be of limited relevance to the kinetics of CTL-mediated killing of somatic cells. Here, live-cell microscopy is used to examine the interactions of CTL and primary murine skin cells presenting antigens.

View Article and Find Full Text PDF