A structure-activity relationship study was carried out to identify structural features in arylalkyl and alkyl isothiocyanates that are associated with the inhibitory potency of these compounds against lung tumorigenesis induced in A/J mice by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These features include the alkyl chain length, phenyl substitution, and secondary isothiocyanates. The naturally occurring allyl isothiocyanate, phenethyl isothiocyanate, and the synthetic analogues such as 6-phenylhexyl isothiocyanate, 8-phenyloctyl isothiocyanate, 10-phenyldecyl isothiocyanate, 1,2-diphenylethyl isothiocyanate, 2,2-diphenylethyl isothiocyanate, and alkyl isothiocyanates (with 1-hexyl, 2-hexyl, and 1-dodecyl as alkyl moieties) were assayed in mice for their tumor inhibitory potential.
View Article and Find Full Text PDFMany arylalkyl isothiocyanates are potent inhibitors of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in rats and mice. In the mouse, 4-phenylbutyl isothiocyanate (PBITC) and 6-phenylhexyl isothiocyanate (PHITC) exhibited greater inhibition than benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC). The present study was conducted to investigate the structure-activity relationships of these four arylalkyl isothiocyanates for their inhibition of NNK oxidation and effects on xenobiotic-metabolizing enzymes in rats and mice.
View Article and Find Full Text PDFWe have shown that PEITC and I3C, both of cruciferous origin, inhibited lung tumor formation induced by the tobacco-specific nitrosamine NNK. The inhibition by PEITC is due largely to its inhibitory effect on the enzymes of NNK metabolism, whereas; the inhibition by I3C may be attributed to its ability to induce hepatic enzyme activity of NNK metabolism, which resulted in decreased availability of NNK to the lung. On a molar basis, PEITC is considerably more effective than I3C.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
July 1993
Our previous studies showed that phenethyl isothiocyanate (PEITC), a cruciferous vegetable constituent, inhibited the lung tumorigenesis induced by a potent tobacco-specific carcinogenic nitrosamine in animals. These results implicate dietary PEITC as a risk-reducing factor of lung cancers induced by smoking. To define the effect of dietary PEITC on human cancers, a method of measuring its uptake is needed.
View Article and Find Full Text PDFCigarette smoking is the major cause of lung cancer in humans. The continuous increase in the prevalence of cigarette smoking worldwide demands a practical means to circumvent this serious health problem. Our research has focused on the development of new chemopreventive agents against lung carcinogenicity of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.
View Article and Find Full Text PDF