Responsible water use and sustainable consumption and production are high on the agenda of multiple stakeholders. Different water supply sources are available, including tap water, bottled water, domestically harvested rainwater and domestically abstracted groundwater. The extent to which each of these water supply sources is used, differs over consumption patterns in various housing types, being detached houses, semi-detached houses, terraced houses and apartments.
View Article and Find Full Text PDFCurrent groundwater treatment facilities, mostly relying on aeration-filtration configurations, aim at the removal of iron (Fe), ammonia (NH ) and manganese (Mn). However, recently water companies expressed the ambition to also reduce arsenic (As) concentrations in these rapid sand filters. The aim of this study was to investigate the effect of the Fe oxidation state entering a biological filter bed on As removal.
View Article and Find Full Text PDFThe efficiency of manganese removal in conventional groundwater treatment consisting of aeration followed by rapid sand filtration, strongly depends on the ability of filter media to promote auto-catalytic adsorption of dissolved manganese and its subsequent oxidation. Earlier studies have shown that the compound responsible for the auto-catalytic activity in ripened filters is a manganese oxide called Birnessite. The aim of this study was to determine if the ripening of manganese removal filters and the formation of Birnessite on virgin sand is initiated biologically or physico-chemically.
View Article and Find Full Text PDFStudies comparing chronologically "young" versus "old" humans document age-related decline of classical immunological functions. However, older adults aged ≥65 years have very heterogeneous health phenotypes. A significant number of them are functionally independent and are surviving well into their 8(th)-11(th) decade life, observations indicating that aging or old age is not synonymous with immune incompetence.
View Article and Find Full Text PDFSeveral researchers have reported phosphorus growth limitations of heterotrophic bacteria instead of main energy source--organic carbon. Usually this phenomenon was noticed in waters with high organic carbon content, where phosphorus concentration was deficient to maintain the growth on level suggested by high organic carbon amount. We analysed the microbially available phosphorus (MAP) and assimilable organic carbon (AOC) in several drinking waters in Flanders, Belgium.
View Article and Find Full Text PDF